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Abstract

We introduce a purely categorical notion of Morita context between abelian categories, which
extends the classical notion of Morita context for module categories as well as the Takeuchi’s
notion of Morita context for comodule categories (Takeuchi, 1977). We prove an extension
both of Morita’s theorem on categories of modules and of Takeuchi’s theorem on comodule
categories for our general notion of Morita context. As an application of our theory, we obtain
an equivalence between certain comodule categories defined by any Takeuchi’s Morita context
similar to that obtained by Nicholson—Watters for module categories at (Nicholson and Watters,
1988). © 1998 Elscvicr Science B.V. All rights reserved.

1991 Math. Subj. Class.: 16D90; 16W30; 18E40

0. Introduction

The classical Morita’s theorem on equivalence of categories of modules can be per-
formed upon the notion of Morita context (see [3]). From this viewpoint, the theorem
says that if (R, S, gVs,sWr) is a Morita context between unitary rings R and S, then
the functors ¥ ®s — and W®g — form an equivalence between the categories of unital
modules R-Mod and S-Mod if and only if the trace ideals of the context are the whole
rings. These conditions entail strong restrictions on the Morita context. There are some
generalizations of this theorem. The common idea is to obtain an equivalence between
certain categories related to R-Mod and S-Mod for a Morita context without restrictions.
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For example, it was shown in [4] that the “hom” functors associated to the context
induce an equivalence between appropriate quotient categories of R-Mod and S-Mod.
A different approach was given in [6], where it was proved that suitable modifications
of the functors V®gs — and W®pg — provide an equivalence between the subcategories
&rC and gC of R-Mod and §-Mod consisting of the trace-torsion-free trace-accessible
modules. This theorem was the motivation of our work [2], where we proposed a
purely functorial notion of Morita context between Grothendieck categories, and we
proved a generalization of [6, Theorem 5] for the there-called wide Morita contexts.

On the other hand, there is a version of the Morita’s theorem on equivalence for
categories of comodules over coalgebras, stemming from a notion of Morita context
between two coalgebras (see [9]). Of course, the fact that the Morita—Takeuchi context
provides an equivalence between the whole categories of comodules via the cotensor
functors forces that the context is strict in the sense of [9]. In this paper we will show,
for an arbitrary Morita-Takeuchi context, the existence of an equivalence between ap-
propriate subcategories of the categories of comodules throughout certain modifications
of the cotensor product functors (see Theorem 4.2). To do this, we introduce the notion
of wide left Morita context between abelian categories. This is a dualization of the no-
tion introduced in [2] for Grothendieck categories. This last concept will be called here
wide right Morita context. We have extended our notions from Grothendieck categories
to abelian categories because in this framework, we can use duality ideas to give an
interpretation for wide right Morita contexts of any result on wide left Morita contexts.
In fact, the main theorem of Section 2 (Theorem 2.4) improve the main theorem of
[2] (see Section 3 and Theorem 3.1).

1. Preliminaries

If f:A— B and g:B — C are morphisms in a category, then the composite arrow
will be denoted by go f or, sometimes, by gf. Keep the same for the composition of
functors. By the word functor we refer to a covariant functor.

For a category 7, and objects 4 and B of o7, the set of all morphisms from A4 to
B will be denoted by Hom (4, B). With this notation, the opposite or dual category
of &7 is the category .&/°°P whose objects are the objects of .o but Hom yow(A4,B) =
Hom(B,A). Of course, the composition law of .o&/°PP is the composition of &/ in
the reversed order. Every functor F:.o/ — % can be considered as well as a func-
tor F:o/°" — Z°P The notion of complete, cocomplete and locally small abelian
category is that of [7]. Categories of this type are the Grothendieck categories (the
completeness can be deduced from the Gabriel-Popescu Theorem [7, Theorem X.4.1
and Corollary X.4.4]).

Now, we will recall briefly some facts about “torsion theory”. A detailed amount can
be found in [7, Ch. VI]. A preradical r of an abelian category 7 is a subfunctor of the
identity functor 1,,. An object 4 of &/ is said to be r-torsion free (resp. r-torsion) if
r(A)=0 (resp. r(4)=A). The full subcategory of .7 consisting of all the r-torsion-free
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(resp. r-torsion) objects of = will be denoted by % (r) (resp. 7 (r)). If 4 is r-torsion
and B is r-torsion free, then Hom (4, B)=0. A preradical r is said to be idempotent
if r(r(4)) =r(A4) for every object 4 of /. A preradical is a radical if r(A/r(4))=0
for every object A of &/. Assume that &/ is complete, cocomplete and locally small.
A class C of objects of o/ is said to be a pretorsion class (resp. pretorsion-free class)
if C is closed under quotient objects and coproducts (resp. subobjects and products).
If, in addition, C is closed under extensions, we speak of torsion (resp. torsion-free)
classes. The assignment » — 7 (r) provides a bijective correspondence between the
pretorsion classes of ./ and the idempotent preradicals of /. Dually, the assignment
r — F(r) is a bijective correspondence between the pretorsion-free classes of .o
and the radicals of /. These correspondences specialize to bijective correspondences
between idempotent radicals and torsion (resp. torsion-free) classes. In particular, there
is a bijective correspondence between torsion and torsion-free classes.

Let C be a full subcategory of an abelian category /. An injective object E of o/
cogenerates C if Hom,(C,E) # 0 for every nonzero object C of C. Analogously, a
projective object P generates C if Hom ,(P,C) # 0 for every object C of C.

2. Equivalences of categories

Consider o/ and # abelian categories. A wide left Morita context for o/ and #
is a pair of left exact functors

G:AaRB . F

together with natural transformations #:1y — FG and p:lg — GF that satisfy the
following compatibility conditions:
® G(ny) = pga for every A€ .
e F(pp) =ngp for every B€ A.

The wide left Morita context will be denoted by (<7, %, G, F,n,p). Now we will
consider idempotent radicals »: &/ — o/ and s: % — %, such that G(F(r)) C F(s)
and F(F(s)) C #(r). In this case we will say that

S = (M’Q,G’F,Yf,p,r,s)

is a left preequivalence situation.

Define G*=sG and F*=rF, and consider, for 4 € o/ and B € 4, the canonical injec-
tions ay:G*A — G4 and Pg:F*B — FB. In this way we have natural transformations
®:G* — G and B:F* — F. Observe that G* and F* preserve monomorphisms.

Propasition 2.1. Let incoy: T (r) — o and incs(s . T (s) — & denote the inclusion
P (r) (s)
Sfunctors. There are natural transformations

ntincyy — FG*
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and
p+ rincg(s) — GF*

such that n4=F(ay)on} for every r-torsion object A of o and pg=G(Pg)o py for
every s-torsion object B of B.

Proof. We need only to prove the existence of #*. Given a r-torsion object 4 of .o,
consider G4 — C the cokernel of the monomorphism a4 :G*4 — GA. Since F is a
left exact functor, we have the following commutative diagram with exact upper row

F(oy)
0 FG*A FGA F(C)

RS

where FGA — K is the cokernel of F(ay) and, so, F(ay) is its kernel. Moreover, the
exactness of the upper row guarantees the existence of the embedding K — F(C). Since
C is s-torsion-free, we have that F(C) is r-torsion-free, whence K is r-torsion-free.
This entails that any homomorphism from 4 to K has to be the zero map. Therefore,
n7 is uniquely determined by the condition F(os)on} =14 Now we will show that
the foregoing construction gives a natural transformation n™* :incs(,y — FG*. To check
the naturality, take any .&/-morphism f:4 — A’ and consider the diagram

FG* A F&'s FG* A’

e, 27
f

FG
FGA —— FGA’
/ f \

with commutative triangles and trapezia. The fact that F(ay ) is a monomorphism
allows to argue on this diagram to obtain that the rectangle commutes, that is, 7}, o f=
FG*fony. O

Proposition 2.2. There are natural transformations
11* : ly(r) — F*G*

and

p* : lg‘(s) — G*F*
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such that nf = Bg-aonyy for every r-torsion object A of s/ and p} = ap-pop} for
every s-torsion object B of %.

Proof. Given an r-torsion object 4 of <7, let FG*A — C be the cokernel of the
monomorphism fg-4: F*G*4 — FG*A. Since C is s-torsionfree, the only morphism
from 4 to C is the zero morphism. This implies that there exists a unique morphism
1y A — F*G*4 making the following diagram commutative:

ﬂG‘A

0—— F¥*G¥A — FG¥*A—— C——0

r..
0
v M4
T J /

A

This construction defines a natural transformation #*: 14y — F*G*. The proof is
similar to that of Proposition 2.i. [

Remark 2.3. 1t is not difficult to show that the functors F* and G* and the natural
transformations n* and p* satisfy the following relations:

o G*(n) = pge4 for every object 4 in T (r).

o F*(pp)=np.p for every object B in 7 (s).

Our aim is to give a sufficient condition on the preequivalence data to obtain that G*
and F* form an equivalence between certain full subcategories of </ and #. We will
say that an object 4 of &/ is 5-coaccessible if , is a monomorphism. Analogously,
we can define p-coaccessible objects %#. For a preequivalence situation S we will
denote by 2/(S) the full subcategory of &/ whose objects are the #-coaccesible and
r-torsion ones. Analogously, #(S) will be the full subcategory of # consisting of the
p-coaccessible objects and s-torsion objects.

Theorem 2.4. Assume that there are injective objects E in of and W in # such
that E cogenerates every r-torsion object of of and W cogenerates every s-torsion
object of A. If Ker(ng) is r-torsionfree and Ker(py) is s-torsion free, then the
Sfunctors

G* . A(S) 2 #(S): F*
define an equivalence of categories via the natural transformations n* and p*.

Proof. Let 4 be an object of .2/(S). We have to prove first that G*4 belongs to
2(S). Since G*A is s-torsion, it suffices to show that it is p-coaccessible. But this is a
consequence of the equality GF(a4) 0 pg-4 = pgs 0 ay. Now, we will prove that 7% is
an isomorphism. From Propositions 2.1 and 2.2 it can be easily deduced that 7% is a
monomorphism. Thus, we have only to show that Coker ()=0. Every homomorphism
from Coker (n;) to E is determined by z:F*G*4 — E such that zon} = 0. We will
prove that z =0.
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First, we claim that it suffices to prove that
ngoz=0. (1)

In fact, if #goz = 0 then there is a morphism f such that the following diagram
commutes:

Ker (1) — E—  FGE
x J /
F*G*A

But we assume that Ker (71g) is r-torsion free, and F*G*4 is r-torsion, whence f =0
and, so, z=0.
To prove that yz oz = 0 we will show first

CONELTEN (2)

Consider the following diagram:

GFG* A ) GFGA
w )
Pora GF*G*A Pea
Ple 4
G(1D)
G*A S GA

We have to show that the bottom triangle commutes. By Proposition 2.1, the left
triangle commutes. Moreover, the square commutes by the naturality of p and the
right triangle commutes by Propositions 2.1 and 2.2. Since GF(x4)o G(fg-4) is a
monomorphism, we can deduce from these facts that the bottom triangle commutes.
Thus, (2) holds. This gives

G(z)o pt. = G(z)oG(ny) ooy =G(zony)oay =0. 3)

Finally, let us prove (1). Since E is injective and fs-4 is a monomorphism, there is
z' :FG*4A — Z making the following diagram commutative:

B

0— F¥*G*A ——""—— FG*A
-
E

By Proposition 2.1 and (3).

G(Z')o pg-4 = G(z') 0 G(BG-4) 0 pey = G(2' 0 Bo=a) © PG g = G(2) 0 pse 4 = 0.
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Thus, have the commutative diagram

F(pge A)=Npge
FG* A P+ A)=TFcea yFGFG* A

V JZ' \ JFG(Z')
n,

F*G*A—* L F 5 FGE

and we obtain that z = 0.
We have proved that every homomorphism from Coker (r7) to E is zero. Since E
is a cogenerator, Coker (173) has to be zero. [J

Corollary 2.5. Let (4, B,G,F,n, p) be a wide left Morita context. Assume that there
are injective cogenerators E of &/ and W of B. Then the functors

G A 2% F

Jform an equivalence of categories via the natural transformations v and p if and only
if ng and py are monomorphisms.

3. Duality

Consider &/ and # abelian categories. A wide right Morita context for o/ and %
1s a pair of right exact functors

G AP F

together with natural transformations #:FG — 1, and p:GF — 14 that satisfy the
following compatibility conditions:

e G(n4)=pgs for every A€ o,

e F(pp)=nrp for every B€ #.

This notion was introduced in [2] for .«/ and # Grothendieck categories with the name
of wide Morita context. We will here obtain an improved version of [2, Theorem 2.6]
from Theorem 2.4. To do this, let us define a right preequivalence situation

S:(ﬂ,'@’G,F’r’,pSr’S)
for the categories .« and % to be a wide right Morita context
(. %,G,F,n,p)

together with idempotent radicals 7 : .o/ — .« and s: & — 4 such that G(I () C T (s)
and F(T (s)) C T (r).

If o/ is a category, then its opposite category .o/°PP is also an abelian category. Any
wide right Morita context

(A, %,G,F,n,p)
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gives a wide left Morita context
(AP B G, F,n,p).

On the other hand, given an idempotent radical r: ./ — &/, we can define an idempo-
tent radical r°PP : /PP — o/ PP by putting r°PP(4)=4/r(4) for every object 4 in /PP,
It is easy to see that the r°PP-torsion objects of &/°PP are precisely the r-torsion-free
objects of .o, and the r°PP-torsion-free objects of .«/°PP are the r-torsion objects of /.
Therefore, given a right preequivalence situation

S=(A,%,G F,np,rs)
we have got a left preequivalence situation
SPP = (o, BT, G, F, 1, p,r,s%P).

Fix the right preequivalence situation S and let us say that an object 4 of o/ is -
accessible whenever 7,4 is an epimorphism. Consider «/(S) the full subcategory of .«
whose objects are the r-torsion-free #-accessible ones. Analogously, we define the full
subcategory #(S) of # consisting of the s-torsion-free p-accessible objects of Z.

From the functors G and F we can define G* : o/ — % and F*: % — </ by putting
G*4 = GA/s(GA) for every object 4 in &/ and F*B = FB/r(FB) for every object B
in 2. In fact, the definitions can be done with respect the opposite wide left Morita
context S°PP. With this formalism, we can apply the theory developed in Section 2 to
obtain natural transformations #* : F*G* — 1) and p* : G*F* — 1), which allows
to rephrase Theorem 2.4 as follows.

Theorem 3.1. Assume that </ and B have projective objects P and Q, respectively,
such that P generates every r-torsion-free object of o« and Q generates every s-
torsion-free object of AB. If Coker (np) is r-torsion and Coker (pg) is s-torsion, then
the functors

G :A(S) =2 #(S):F*
define an equivalence of categories via the natural transformations n* and p*.
Of course, we can deduce the following corollary.

Corollary 3.2. Let (4, %8,G,F,n,p) be a wide right Morita context. Assume that
there are projective generators P of o/ and Q of B. Then the functors

G:A 2R F

form an equivalence of categories via the natural transformations n and p if and only
if np and pg are epimorphisms.
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4. Morita-Takeuchi contexts

Fix a commutative field k. Let C be a coalgebra over k£ with comultiplication 4:C —
C ® C and counit ¢: C — k. We refer to [8] for the details. The dual space C* =
Hom,(C, k) can be canonically endowed with structure of k-algebra. The structure map
for a right C-comodule M will be denoted by Ay : M — M ® C. The coalgebra C can
be considered as a right C-comodule with structure map Ac=A4. The right C-comodules
together with the C-colinear maps between them form a Grothendieck category .#€.
In fact, #C is isomorphic to a closed subcategory of the category C*-Mod of all left
modules over C* In particular, the C-colinear maps between C-comodules are precisely
the C*-linear maps between them.

The right C-subcomodules of C are called right coideals of C. Left coideals are
defined similarly. It is not hard to see that if W is a k-vector space and X is a right
C-comodule, then W ® X is a right C-comodule with structure map Iy @Ay : W QX —
W ® X @ C. Moreover, if W is a right C-comodule, then the structure map Ay : W —
W ® C becomes C-colinear.

Consider coalgebras C and D. Following [9], a C-D-bicomodule M is a left C-
comodule and right D-comodule such that the C-comodule structure map puy : M —
C ® M is D-colinear or, equivalently, that the D-comodule structure map Ay :M —
M ® D is C-colinear.

Assume that X and Y are, respectively, right and left comodules over a coalge-
bra C. The cotensor product X Cc Y is defined as the kernel of the morphism iy ®
I - @ly=:XQY - XQC®Y. If c-Mp is a C-D-bicomodule and pNg is a
D-E-bicomodule, then the comodule structure maps Ay :M — C QM and Iy :N —
N ®E induce the structure maps Ay Op Iy :MOpN - (COM)Opb N=CQM[LpN)
and IyOp Ay . MUOpN - MOp(NQEY=(MIpN)® E with which MUp N is a
bicomodule. Moreover, M p N is a left C- and right E-subcomodule of M ® N. Con-
sider the structure of right C-comodule on X ® C defined by 1 ® 4, then X[ C is
a C-subcomodule of X ® C. Moreover there is a comodule isomorphism X ¢ C &
X given by x ® ¢ — x&(c). Let oy be the inverse isomorphism and let us denote
by i:XOcC—-X®C the inclusion map. The following diagram is
commutative:

Xg.c——x®cC
\EII 4
X

The following is the notion of Morita context between coalgebras introduced in [9].

Definition 4.1. A Morita—Takeuchi context (C,D,cMp,pNc, f,g) consists of coalge-
bras C and D, bicomodules -Mp and pN¢, and bicolinear maps f:C — M[p N and
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g:D — NOc M making the following diagrams commute:

M———M[O,D N———N[O:C

e T

cao.mM2L Mo, NnO.M  DONELEL NO.MON

Let us fix a Morita—Takeuchi context (C, D, c:Mp,pNc, f,¢). From [9] we know that
this context defines two left exact functors

—OcM: M€ 2 4°: —~ OpN

which will be called coinduction functors. There are also natural transformations
n:lyc— ~OcMOpNand p:1 4p — —Op N Oc M defined for X € #€ and ¥ € #°
in the following way. We know the existence of natural colinear isomorphisms dy : X —
XUOc C and yy:Y — YOp D. Define

nx =(UxOc f)odx

and
py =UyOpg)oyy.

The foregoing facts, together with [9, Remark 2.4], prove that
(ME, MP,—Oc M,—~Tc N, 1, p)

is a wide left Morita context.

Our next proposal is to prove a version for comodules of [6, Theorem 5]. Recall
that a k-subspace A of a coalgebra C is said to be a subcoalgebra of C whenever
A(A)C AR A. Tt is well known that a left and right coideal of C is a subcoalgebra of
C. Therefore, Ker f and Ker g are subcoalgebras of C and D, respectively.

If A is a subcoalgebra of C then A1 ={f € C*: f(a)=0Vac A} is an ideal of C*.
It is easy to show that

Ti={XeM 41X =X} (5)

is a torsion class in .#°. Therefore, there is an idempotent radical r;: .#¢ — #C
such that its associated torsion class is J k. . Analogously, we consider the idempotent
radical r,: 4P — #P. The cotensor functors can be modified as follows. For X € .#€,
define XTc M = ry(X Oc M) and, for ¥ € .47, define YOp N = rp(Yp N). We will
prove the following theorem.

Theorem 4.2. Let

(C,D,CMD,DNC,f,g)
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be a Morita—Takeuchi context. Consider the full subcategories
CY={X c.#C :(Anny((Ker f)1)=0 and (Ker f)*X =X}
and
CP ={Y ¢ .#": (Anny((Ker g)*) =0 and (Ker g)*Y = Y}.
Then the functors
TTOcM:CC 2 CP:=Op, N
form an equivalence of categories.

Write XAY=A"'(X®C+C®Y), where X, Y are subspaces of C. By [8, Proposition
9.0.0.(c)], the "wedge” A is associative. Define recursively A" X = X A ( /\"_IX ), for
n>0,and A°X =0. Put A® X ={,., A" X. If 4 is a subcoalgebra of C, then \” 4
is a subcoalgebra of C for o =0,1,...,00.

For every C-comodule X, there is an associated subcoalgebra C(X) of C [1, p. 129].
Now, for any subcoalgebra 4 of C, define

Cyi={XecHC:C(X)CA4). 6)

It is immediate that X € C4 if and only if Ax(X)CX ® 4. Therefore, by [5, Theo-
rem 4.2], C4 is a closed subcategory of .#¢ and

Ci={X€uC 4+x =0}. (M

Lemma 4.3. Let A be a subcoalgebra of C and let &, denote the torsion-free class
associated to the torsion class 4. Then, for any natural number n,

Chant ©F4 CCrooy.

Proof. Let Y €Cpny, X €74 and ¢ € Hom 4c(X,Y). From [8, Proposition 9.0.0.(a)]
we can easily deduce that

Ay (@t ytt = (N
Therefore,
X =(tyx =N\ 4%

and, thus, ¢(X)C(A"4)1Y = 0. This proves that ¢ = 0 and, therefore, Cang C F.

By [5, Theorem 4.2, Proposition 4.8] Cr~ 4 is a hereditary torsion class closed under
direct products. If we consider Co~4 as torsion-free class, then its associated torsion
class is Z Ax4. Since torsion and torsion-free classes determine each one the other, it
follows that %ro 4 = Cprccy. Finally, since T py C Ty, it follows that Fy C Frocy =
Crooy. O
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Proof of Theorem 4.2. We will prove that (%€, #°, —Oc M,—Op N, 1, p, reorg)is a
preequivalence situation and that Kerny (resp. Ker py) is ry-torsion free (resp. r,-
torsion free) for every X € #C€ (resp. Y € .#P”). Therefore, Theorem 4.2 will be a
consequence of Theorem 2.4.

First, let us prove that

Ker ny € Cxer y forevery X € HME. (8)

A routine computation shows that Ay(Ker 7x) CX ®Ker f. This implies that (Ker f)*
Ker ny = 0 and, thus, (8) holds. Now, let 4 be any subcoalgebra of C. An easy
consequence of diagram (1) is that for every X € C4

XOc C=X0OcA. )

Since (A€, #P,—0Tc M, Tp N,n,p) is a wide left Morita context we have PxClom =
nx Uc Iy and, therefore,

PxOem = UxUc fUcIy) o (0xUc Iy )-
By (9), XO¢ CCe M = X Cle A O M and, thus,
Im(py, p) EX Oc f(4) Oc M. (10)

If X, Y, Z are vector subspaces of C, then X C ZAY if and only if Y1X C Z. This allows
to prove by induction on n that the bicomodule /(A" Ker f) belongs to Can-1xer ¢ for
every positive integer n. Therefore, for every right C-comodule X,

XOc f(/\ Ker £)€Crriger 1 (11)
Now we are ready to prove that
IfXGﬂ"KerfthenXDCMeﬁ*"Kcrg. (12)

Assume that X is a finite-dimensional comodule. By Lemma 4.3, X € Cpker 7. By (6)
C(X)C A Ker f. Since C(X) is finite-dimensional, it follows that C(X) C A" Ker f
for some n and, hence, X € Canker s. Therefore, if we prove

If X € Cprger s then XOc M € Fer g (13)

then (12) holds in the finite-dimensional case. We proceed by induction on n. If n=1
and X € Cxer s then, by (10), pyr., = 0. By the version for p of (8), XUcM =
Ker py.m € Cker 4- By Lemma 4.3, (13) holds for n=1. Let n > 1 and X € Carker f-
By (11) and the induction hypothesis, XU f(A"Ker f)OcM € Fgery. By
(10), Impy 4 SX e fS(A"Ker f)Uc M. Therefore, Impy, ) € Frerg- Since
Ker py. ) belongs to Cker 4, it follows that Ker py 5 € Fker ¢ (Lemma 4.3). Since
Fxer 4 1 closed under extensions, we have proved (13) and, therefore, (12) in the case
that X is finite-dimensional. If X is any right C-comodule, then we can write X as
direct union of finite-dimensional subcomodules. Moreover, —c M is a direct limit
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preserving left exact functor. This entails that X [ M can be expressed as direct union
of subcomodules which belong to Fk.: 4. It is not difficult now to see that X UOc M is
itself #,-torsion free. This finishes the proof of (12).

The last part of the proof of Theorem 4.2 consist in checking that a right C-comodule
X is #-coaccesible if and only if Anny(Ker f)* =0. For a right C-comodule X, let us
denote by ¢/(X) the greatest subcomodule of X that belongs to Cker r. By [5, Theo-
rem 4.2], Anny((Ker f))=0 if and only if #,(X)=0. We claim that #,(X)=Ker nx
for every right C-comodule X. Once this claim is proved, the proof is finished. We
know that Ker ny € Cger 1, so that Ker ny C#,(X). Since # is a natural transformation,
the following square commutes:

7(X) b ¢

Jﬂ,f(X ) l’lx

LX) OMON — XOMON
where the horizontal maps are monomorphisms. Therefore,
Ker n,,xy = Ker nx Ne,(X).

Now, Ker 7,,xy = t7(X) and, thus, t,(X) CKer nx. This entails the equality z,(X) =
Ker 5y, which finishes the proof. [
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